
1

A Logic of Graph Conditions Extended with Paths ?

Marisa Navarro1, Fernando Orejas2, Elvira Pino2, and Leen Lambers3

1 Universidad del Paı́s Vasco (UPV/EHU), San Sebastián, Spain
2 Universitat Politècnica de Catalunya, Barcelona, Spain

3 Hasso Plattner Institut, University of Potsdam, Germany

Abstract. In this paper we tackle the problem of extending the logic of nested
graph conditions with paths. This means, for instance, that we may state prop-
erties about the existence of paths between some given nodes. As a main contri-
bution, a sound and complete tableau method is defined for reasoning about this
kind of properties.

1 Introduction

Being able to state properties about graphs and to reason about them is important in
many areas of computer science, where graphs play a relevant role. For instance, in
software and system modeling, where models are described using different graphical
notations, graph properties may be used to describe properties of the given models, and
reasoning tools may be used for model validation. Similarly, in the context of graph
databases, for instance, graph properties could be used to express integrity constraints
or just to express queries to the database. In that context reasoning tools may allow us
check these constraints or to formally define the search engine to satisfy these queries.

Two kinds of approaches can be used to describe graph properties. On the one hand,
we may use some standard logic, after encoding some graph concepts in the logic. For
instance, this is the approach of Courcelle [1], who studied a graph logic defined in
terms of first-order (or monadic second-order) logic, extended with a predicate node(n)
for stating that n is a node, and with a predicate edge(n,n′), for stating that there is
an edge from node n no n′. The second kind of approach is based on expressing graph
properties in terms of formulas that include graphs (and graph morphisms). The most
important example of this kind of approach is the logic of nested graph conditions
(LNGC), introduced by Habel and Pennemann [4], which was proven to be equivalent
to the first-order logic of graphs of Courcelle. Moreover Pennemann [12] showed that a
specialized prover for their logic outperformed some standard provers, like Darwin or
Vampire, when applied to graph formulas using Courcelle’s logic.

A main problem of the LNGC is that we can only express local properties, but it
is not possible to express relevant properties like “there is a path from node n to n′”,
or “the given graph is connected”, which are second-order properties with respect to

?This work has been partially supported by funds from the Spanish Ministry for Economy and
Competitiveness (MINECO) and the European Union (FEDER funds) under grant COMMAS
(ref. TIN2013-46181-C2-1-R, TIN2013-46181-C2-2-R) and from the Basque Project GIU15/30,
and grant UFI11/45.



LNGC. In this sense, we extend LNGC with the possibility of stating that there are paths
between some nodes. Moreover, we present a tableau method, extending the work in [8,
9], that is shown to be sound and complete for this new logic. It must be said that this
extension was not straightforward. First, as explained in Sect. 2.2, we have to consider
the existence of infinite paths, then, it was not obvious to find the right notion of infinite
path. Also, we had to deal with the problem that, in [8] a set of negative literals is always
satisfiable, but not when dealing with paths. Finally, our formulas are more general than
the formulas used in [8], not only because of paths, but also because we allow for the
use of arbitrary morphisms, and not only monomorphisms and, the same happens with
satisfaction, defined also in terms of arbitrary morphisms.

The paper is organized as follows. In Sect. 2, we introduce graphs, patterns and how
they are related, and we also discuss the need to deal with infinite graphs with infinite
paths as models of our logic. Then, in Sect. 3, we introduce the syntax and semantics
of our logic, including the class of formulas in Conjunctive Normal Form and some
basic results that are needed in the rest of the paper. In Sect. 4, we present our tableau
reasoning method and we show its sounded and completeness. Finally, in Sect. 5, we
describe related work and we present some conclusions.

2 Preliminaries

2.1 Graphs, Patterns, and graph properties

Roughly, the idea of the graph logics that are based on the notion of graph constraints
[7] is that basic properties state if a given pattern is present in a graph, where patterns are
graphs themselves. For instance, the graph on the left of Fig. 1 describes the existence
of three nodes, where 1 is connected to 2, 2 is connected to 3, and 3 is connected to 1.
More precisely, if we work with a certain category of graphical objects (e.g. directed
graphs), then a pattern P may be just an object in that category, and we consider that
this pattern occurs in an object G if there is a morphism from P to G. However, in this
paper, we work with patterns that may include the specification of the existence of paths
between nodes of a graph. For instance, the pattern on the right of Fig. 1 describes the
existence of three nodes, where 1 is connected to 2, 2 is connected to 3, and there is a
path (⇒) from 3 to 1. That is, in this paper patterns are not exactly graphs, implying
that they would belong to different categories, adding some complication. We solve this
problem by defining a notion of pattern, where graphs can be seen as a special case.

Fig. 1: Patterns



Definition 1 (Graph Patterns, Complete Patterns, Graphs and Morphisms). A graph
pattern P is a tuple P = (NodesP,EdgesP,sP, tP,⇒P), where

– NodesP is a set of nodes,
– EdgesP is a set of edges,
– sP : EdgesP → NodesP and tP : EdgesP → NodesP are the source and target func-

tions, and
– ⇒P⊆ NodesP×NodesP is the path relation.

A pattern is complete if⇒P includes the transitive closure→+
P of the relation→P⊆

NodesP ×NodesP, defined as 〈n,n′〉 ∈→P, if there is an edge e ∈ EdgesP such that
sP(e) = n and tP(e) = n′. P∗ denotes the completion of P, i.e. the smallest complete
pattern that includes P. A graph G is a complete pattern such that⇒G=→+

G .
A pattern morphism f : P1 → P2, f = ( fN , fE) consists of two functions fN :

NodesP1 → NodesP2 , fE : EdgesP1
→ EdgesP2

such that n⇒P1 n′ implies fN(n)⇒P2

fN(n′), fN ◦ sP1 = sP2 ◦ fE and fN ◦ tP1 = tP2 ◦ fE .

Graph properties can be described by using certain diagrams including patterns,
morphisms and logical symbols. For instance, we may consider that the property on the
left of Fig. 2 states that there must not exist cycles in a graph (i.e. there is no node having
a path to itself); and that the property on the right, where h1 and h2 are the obvious
inclusions, states that there must exist a node with a loop, such that for all pairs of edges
connected to that node, there exist two paths into some node completing a rectangle.
Since we consider arbitrary (not necessary injective) morphisms, in some models these
two paths may overlap. More precisely, a graph G would satisfy the latter condition if
there exists a morphism f : P1 → G such that for every morphism f ′ : P2 → G, with
f = f ′ ◦h1, there exists a morphism f ′′ : P3→ G, such that f ′ = f ′′ ◦h2.

2.2 Infinite Graphs and Infinite Paths

According to Def. 1, graphs and patterns may be infinite, even if we are only interested
in finite graphs. But conditions, like the ones depicted in Fig. 3, may specify infinite
graphs1. In Fig. 3, the first two properties state that there must exist a node, let us call
it 1, and that every node must be connected to another node. This means that 1 must be
connected to a node 2, and 2 must be connected to a node 3, and so on. Moreover, all
these nodes must be different. For instance, if 3 and 1 are the same node, there would

1 Or, equivalently, they may have only infinite models.

Fig. 2: Graph properties



Fig. 3: A set of properties having no finite models

be a path from 1 to itself, contradicting the third property. So there is no finite graph
that satisfies these properties, but a graph consisting of infinite nodes 0,1,2, . . . ,n, . . . ,
where for every node i there is an edge to node i+1, would satisfy these properties.

We may consider that this set of properties is correct and assume that the models
of a set of properties include infinite graphs, or that this example is erroneous (like a
non-terminating program), because it has no finite models. The problem in the latter
case is that finite graph satisfiability is not even semi-decidable, which means that no
complete refutation (deduction) method can exist, if models are just finite graphs, as
shown by Trakhtenbrot [15]. As a consequence, wconsider that infinite graphs may be
valid models in our logic.

Obviously, if we think that only finite graphs should be considered valid, this would
be a limitation of our results. In particular, if a set of conditions is only satisfied by infi-
nite graphs, we would be unable to refute it. We must claim, nevertheless, that working
with infinite graphs has almost no consequences in practice, since the completeness of
our deduction method implies that we can detect all unsatisfiable sets of conditions,
whose inconsistency can be proven finitely.

Also according to Def. 1, paths are assumed to be finite, since we require in graphs
that⇒G must be the transitive closure of→G. Unfortunately, in this case, satisfiability
is not semi-decidable either. Hence, we also consider that the path relation may be
interpreted by (finite or infinite) sequences of edges.

To end this section, we provide a definition of what an infinite path is, based on
the idea that we are not interested in all kinds of infinite graphs or patterns, but only
on those that can be built as the limit (technically, the colimit) of a sequence of finite
patterns {Pi

ai→ Pi+1}i≥0. Then, roughly, an infinite path from a node n to a node n′

would be the limit of two sequences of edges, {ei}i≥0,{e′i}i≥0, where the first sequence
starts in n, the second sequence ends in n′, and we could think that both sequences meet
somewhere in the middle. Moreover, for each i, ei,e′i must be the image of edges oi,o′i,
respectively, from pattern Pi, so that there is a path from the target of oi to the source of
o′i. This is an unusual definition of infinite paths. A standard one would see an infinite
path as a sequence of edges that starts in n and approaches n′ infinitely. This definition
is not adequate for us, because we need to be able to say, for instance, that a given
(possibly infinite) path starts by some edges and finishes by some other edges.

Definition 2 (Infinite Paths, Graphs with Infinite Paths). An infinite path from nodes
n to n′ in a pattern P consists of two sequences of edges in P, {ei}i≥0,{e′i}i≥0, with
sP(e0) = n, tP(e′0) = n′, such that P is the colimit of {Pi

ai→ Pi+1}i≥0, where each Pi is
finite, and for every i there are edges oi,o′i in Pi, i≥ 0, with:

– fi(oi) = ei and fi(o′i) = e′i.



– ai(tPi(oi)) = sPi+1(oi+1) and ai(sPi(o
′
i)) = tPi+1(o

′
i+1).

– tPi(oi)⇒Pi sPi(o
′
i).

A complete pattern P is a graph with infinite paths if whenever n⇒P n′ either n→+
P

n′ or there is an infinite path in P from n to n′.

From now on, graphs with infinite paths will be just called graphs and they will be
assumed to be the models of our logic.

3 Graph Properties expressed in GPL

In previous sections, we were informally writing graph conditions in examples to pro-
vide some intuition about our Graph Pattern Logic (GPL). In this section, we will define
precisely their syntax and semantics. In the first subsection, we adapt the nested notation
defined in [4], and in the second one we study the transformation of arbitrary conditions
into Conjunctive Normal Form (CNF) and some other constructions that are needed.

3.1 Graph Properties as Nested Conditions

For our convenience, we express graph properties using a nested notation [4] and avoid-
ing the use of universal quantifiers.

Definition 3 (Conditions over Patterns). Given a finite pattern P, a condition over P
is defined inductively as follows:

– true is a condition over P. We say that true has nesting level 0.
– For every morphism a : P→Q and condition cQ over a finite pattern Q with nesting

level n≥ 0, ∃(a,cQ) is a condition over P with nesting level n+1.
– If cP is a condition over P with nesting level n, then ¬cP is a condition over P with

nesting level n.
– If cP and c′P are conditions over P with nesting level n and n′, respectively, then

cP∧ c′P is a condition over P with nesting level max(n,n′). We restrict ourselves to
finite conditions, i.e. each conjunction of conditions is finite.

If G is a graph, we inductively define when a morphism f : P→G satisfies a condi-
tion cP over P, denoted f |= cP:

P a //

f ��

Q � cQ

f ′|=cQ||
G

– f |= true.
– f |= ∃(a,cQ) if there exists f ′ : Q→ G such

that f ′ ◦a = f and f ′ |= cQ.
– f |= ¬cP if f 6|= cP
– f |= cP∧ c′P if f |= cP and f |= c′P.

If cP is a condition over the pattern P, we also say that P is the context of cP.

In many approaches (e.g. [8]), morphisms in conditions are assumed to be injec-
tive, but we consider (as in [4]) that they may be non-injective, since this gives more
expressive power to the formalism. Similarly, in most approaches, it is assumed that



the morphism f in the above definition is injective. We assume that f may be any mor-
phism (a-satisfaction, according to [4]). There are two reasons for this. First, injectivity
of f is similar to requiring, in classical logic, that variable assignments should be injec-
tive. Then, working with arbitrary morphisms simplifies the construction for the shifting
lemma (cf. Lemma 1), replacing pair factorizations by pushouts. In particular, the use
of pushouts, instead of pair factorizations, reduces considerably the size of proofs.

It is often argued that, in practice, m-satisfaction is more intuitive than a-satisfaction.
This is considered a practical argument in favour of m-satisfaction. However, in [4] it
is proved that both forms of satisfaction are equivalent. In particular, given a set S of
conditions, there is a transformations tr such that a graph G m-satisfies S if and only if
G a-satisfies tr(S). Hence, working with a or m-satisfaction is not relevant in practice.

Nested conditions are more general than needed, since they define properties on
graph morphisms, rather than on graphs. Graph properties in our graph pattern logic
GPL are conditions over the empty pattern, since a morphism /0→G can be considered
equivalent to the graph G. However, we must notice that if ∃(a,c) is a graph property,
in general c is an arbitrary condition over graph patterns.

Definition 4 (GPL Syntax, GPL Semantics). The language of graph properties with
paths consists of all conditions in GPL over the empty pattern /0. Given an element
∃(a,cP) of GPL with a : /0→ P, we also denote it by ∃(P,cP). A graph G satisfies a
graph property c of GPL if the unique morphism i : /0→ G satisfies c.

Notice that, if a : P→Q is a split morphism 2, then ∃(a,true) is equivalent to true.
The reason is that every morphism h : P→ G satisfies ∃(a : P→ Q,true), because the
morphism h◦a−1 : Q→ G satisfies h◦a−1 ◦a = h. But ∃(a,c), with a : P→ Q split, is
not equivalent to c. In fact, ∃(a,c) is a condition over P, while c is a condition over Q.

In [8], sets of negative literals ¬∃(a,cQ) are always satisfiable if a is not a split
morphism, since idP |= ¬∃(a,cQ) because there is not a morphism b : Q→ P such that
b◦a= idP. But, in our logic with paths, this is not true, as the following example shows.

Example 1. Consider the following two negative literals:

`1 = ¬∃(
1•⇒2• b1−→ 1•→2•,true) `2 = ¬∃(

1•⇒2• b2−→ 1•→•⇒2•,true)

b1 and b2 are not split but the condition c = `1 ∧ `2 is obviously unsatisfiable because

for every graph G such that
1•⇒G

2•, it is either satisfied that
1•→G

2• or
1•→G •⇒G

2•.

3.2 Conjunctive Normal Form, Shifting, and Unfolding

In this section, we introduce the notion of clause and conjunctive normal form in GPL
that is needed in the following section to present tableau reasoning [6] efficiently.

Definition 5 (Literals, CNF-conditions). A positive (resp. negative) literal ` is a con-
dition of the form ∃(a,d) (resp. ¬∃(a,d)), and a clause is a disjunction of literals.

2 a is a split morphism if it is mono and has a left inverse. That is, there is a morphism a−1 such
that a−1 ◦a = idP.



A condition c is in conjunctive normal form (CNF) if it is either true, or false, or
a conjunction of clauses c = ∧ j∈Jc j, with c j = ∨k∈K j` jk, where for each literal ` jk =
∃(a jk,d jk) or ` jk = ¬∃(a jk,d jk), a jk is not a split morphism and d jk is in CNF.

In [12], Pennemann describes a procedure for transforming any condition into CNF.
Since our framework is slightly more general than [12], a slight adaptation of that pro-
cedure is needed in our case. Essentially, we have to consider the case when a literal
includes a split morphism, a : P→ Q. In this case, we use the following equivalences:

∃(a,true)≡ true and ∃(a,∃(b,c))≡ ∃(b◦a,c)

that allows us to eliminate split morphisms from conditions. In the rest of the paper, the
notation [c] will stand for the transformation of the condition c into its CNF form.

In the sections below, we make extensive use of the following shifting result that
allows us to move a condition along a morphism.

Lemma 1 (Shift of Conditions over Morphisms). Let Shi f t be a transformation of
conditions inductively defined as follows:

P

Q

P′

Q′
a a′(1)

b

b′

cQ cQ′

– Shi f t(b,true) = true.
– Shi f t(b,∃(a,cQ)) = ∃(a′,cQ′) with cQ′ = Shi f t(b′,cQ)

such that (1) is a pushout.
– Shi f t(b,¬cP) = ¬Shi f t(b,cP)
– Shi f t(b,∧i∈IcPi) = ∧i∈IShi f t(b,cPi).

Then, for each condition cP over P and each morphism b : P→P′, cP′ = Shi f t(b,cP)
is a condition over P′ with smaller or equal nesting level, such that for each morphism
f : P′→ G we have that f |= cP′ ⇔ f ◦b |= cP.

In [11, 12], Penneman proves that, given two literals `1 and `2, a new literal `3 can
be built (pushing `2 inside `1) that is equivalent to the conjunction of `1 and `2.

Lemma 2 (Lift of Literals [11, 12]). Let `1 = ∃(a1,c1) and `2 be literals with mor-
phisms ai : P→Qi, for i= 1,2. We define the lift of literals as follows: Li f t(∃(a1,c1), `2)=
∃(a1,c1∧ [Shi f t(a1, `2)]). Then, f |= `1∧ `2 if, and only if, f |= Li f t(`1, `2).

In our case, in addition to a lifting rule based on that operation, we also need a
rule that allows us to unfold the paths occurring in the contexts of conditions. For this
purpose, in the rest of this subsection, we formalize the unfolding mechanism that we
will use in the rest of the paper. Let us first define the following unfolding inclusions:

Definition 6 (Unfolding). If 〈n,n′〉 ∈⇒P, we define the following inclusion morphisms:

– u0
P[n,n′] : P ↪→ P[n→n′]

– u1
P[n,n′] : P ↪→ P[n→m1⇒n′]

– u2
P[n,n′] : P ↪→ P[n⇒m2→n′]

where P[. . . ] is the least pattern including P, such that any node inside the brackets [. . . ]
which is different from n and n′ is assumed to be a fresh new node, and any relation
inside [. . . ] holds in P[. . . ].

It is easy to see that if 〈n,n′〉 ∈⇒P, the condition ∃(u0
P[n,n′],true)∨(∃(u

1
P[n,n′],true)∧

∃(u2
P[n,n′],true)) is a tautology.



4 Tableaux Reasoning for Graph Properties with Paths

Tableaux are a standard refutation technique for theorem proving that is used in the con-
text of many logics (see, e.g. [6]). A tableau is a tree that represents the set of formulas
that we want to refute. A branch in a tableau is the representation of the conjunction
of formulas in the branch, and a tableau represents the disjunction of all the formulas
represented by its branches. Tableaux are constructed by some given rules. Some of
these rules allow us to decompose the given formulas into subformulas that are placed
in the tableau. And we also have inference rules whose results are also placed in the
tableau. When we detect a contradiction in a branch of a tableau, we close the branch.
If at some point all the branches of the tableau are closed, we consider that the given
set of formulas has been refuted. In this sense, the role of the inference rules is to
generate enough consequences, so that contradictions are made explicit. Conversely, if
there are open branches and we have not postponed indefinitely the application of some
inferences, we consider that the given set of formulas is satisfiable. Obviously, if satisfi-
ability is undecidable, the construction of a tableau may never end. However, soundness
and completeness would ensure that, the given formulas are unsatisfiable if and only if
their associated tableau would be closed in finite time.

In our case, the nested structure of conditions makes it difficult to check satisfiability
using standard tableaux. For this reason, we have developed a notion of nested tableaux
that fits adequately in our framework. More precisely, in the first subsection of this
section, we present the basic tableaux that we use, together with the inference rules that
we use to build them; in the second subsection, we study our notion of nested tableaux;
finally, in the third subsection we present our soundness and completeness results.

4.1 Basic Tableaux for Graph Conditions

As often done, the formulas in our tableaux are literals. The construction of a tableau
for a condition cP in CNF is roughly as follows. We start with a tableau consisting of
the single node true, and for every clause c1 ∨ . . .∨ cn in cP we extend all the leaves
in the tableau with n branches, one for each condition ci. The rules that are specific for
our logic are the lift rule based in Lemma 2 [11, 12], and the unfolding rule, based on
the construction described in Def. 6. In the former rule, given two literals `1 = ∃(a1,c1)
and `2 in the same branch, we add the literal `3 = Li f t(`1, `2) to that branch. In the
latter case, if the context is P and 〈n,n′〉 ∈⇒P, the unfolding rule allows us to extend
this branch with two new branches, one with the literal ∃(u0

P[n,n′],true), and the other
with two literals {∃(ui

P[n,n′],true)}i=1,2, as can be seen in Fig. 4.

Definition 7 (Tableau and branch of context P). Given a finite pattern P, a tableau of
context P is a finitely branching tree whose nodes are literals over P in CNF. A branch
in a tableau T is a maximal path in T .

Definition 8 (Tableau rules). Given a condition cP over P in CNF, a tableau of context
P for cP is constructed using the following rules:

– Initial rule: A tree consisting of the single node true is a tableau.



Fig. 4: Tableau Rules

– Extension-rule (∨): If the clause `1∨ . . .∨ `n is in cP, we can extend all branches
B with n descendants `1, . . . `n.

– Lift rule (Lift): If a given branch B includes the literals `1 = ∃(a1,c1) and `2 then
we can extend B with the literal [Li f t(`1, `2)].

– Unfolding rule (U): If 〈n,n′〉 ∈⇒P, we can extend all branches B with 2 descen-
dants, the first one with literal ∃(u0

P[n,n′],true), and the second one with literal

∃(u1
P[n,n′],true) followed by literal ∃(u2

P[n,n′],true).

Definition 9 (Open/closed branch). In a tableau T a branch B is closed if B contains
∃(a,false) or false; otherwise, it is open.

For instance, consider the condition cP = `1 ∧ `2 with context P being the pattern
1•⇒2•, from Example 1. Then, in Fig. 5 we have a closed tableau for cP. Notice that the
tableau can be closed because:

– Shi f t(u0
P, `1) = ¬∃(id1•→2•

,true)≡ false.

– Shi f t(u1
P, `2) = ¬∃(id1•→•⇒2•

,true)≡ false.

The above rules may generate contradictions at the outer level of nesting for the
literals in the given condition cP, as seen in the example in Fig. 5. This is not enough,
because contradictions may occur at inner levels of nesting. Instead of defining ad-
ditional rules that would do something similar at any nesting level, what we do is to
associate additional tableaux for each level. Our procedure can be roughly described
as follows. First, we apply the extension rule until no new literals can be added. Next,
if 〈n,n′〉 ∈⇒P, we apply the unfolding rule in connection to, at least, one such pair
of nodes on every branch of the tableau. Then, for every branch B, either we are able
to close it, or using the lifting rule as many times as needed, we produce a literal that
represents the conjunction of literals in B (see Lemma 2). If `1, . . . , `n are the literals in
the branch, it is enough to choose a positive literal3, say `1, that we call the hook of the

3 If all the literals are negative, this would mean that the context P does not include any pair
of nodes 〈n,n′〉 ∈⇒P, since, otherwise, an unfolding rule would have generated a positive



true
(∨)

`1 = ¬∃(
1•⇒2• b1−→ 1•→2•,true)

(∨)

`2 = ¬∃(
1•⇒2• b2−→ 1•→•⇒2•,true)

(U)

∃(1•⇒2•
u0

P−→ 1•→2•,true)
(Li f t(u0

P, `1))

∃(u0
P, [Shi f t(u0

P, `1)]) =

∃(u0
P,false)

∃(1•⇒2• u1
P−→ 1•→•⇒2•,true)

∃(1•⇒2• u2
P−→ 1•⇒•→2•,true)

(Li f t(u1
P, `2))

∃(u1
P, [Shi f t(u1

P, `2)]) =

∃(u1
P,false)

Fig. 5: Closed Tableau.

branch, and to successively apply the lift rule, first to `1 and `2, next to the result and
`3 and so on, until we have applied the lift rule to all the literals in the branch. Hence,
at the end, the leaf of the branch will be the literal ∃(a1,c1 ∧`∈{`2,..,`n} [Shi f t(a1, `)]).
Finally, as we will see in the following section, we build a new tableau associated to the
condition in the following nesting level, i.e., c1∧`∈{`2,..,`n} [Shi f t(a1, `)], and so on.

Definition 10 (Semi-saturation, hook for a branch). Given a tableau T for a condi-
tion cP over P, we say that T is semi-saturated if:

– No new literals can be added to any branch in T using the extension rule,
– At least an unfolding rule associated to some pair of nodes 〈n,n′〉 ∈⇒P, if any, has

been applied and
– For every branch B in T one of the following conditions hold:

• B is closed.
• All the literals in B are negative and⇒P= /04

• There is a positive literal ` = ∃(a : P→ Q,c) in B, such that the literal in the
leaf of B is `lea f = ∃(a, c∧`′∈B\{`} [Shi f t(a, `′)]). Then, we say that ` is the
hook for the branch B in T .

literal. In that case, no rule can be applied, but we can conclude that the given condition cP is
satisfiable. The reason is that the identity would be a model for all the literals in the branch.

4 If⇒P would not be empty, the application of the unfolding rule would imply that the branch
would include a positive literal.



It should be obvious that, following the procedure described above, for any condi-
tion in CNF we can build a finite semi-saturated tableau.

To end this section, we show the soundness of the tableau rules.

Lemma 3 (Tableau soundness). Given a condition cP in CNF and a tableau T for this
condition, if cP is satisfiable then, so is T .

The proof is by induction on the structure of the tableau. The base case is trivial. If a
node has been added by using the extension rule, then satisfiability of the given con-
dition implies satisfiability of the tableau. The case of the unfolding rule is a direct
consequence of the fact that this rule just adds to the tableau a tautology. Finally, the
case of the lift rule is a consequence of Lemma 2.

4.2 Nested Tableaux for Graph Properties with Paths

The idea of nested tableaux is that, for each open branch of a tableau T whose literal
in the leaf is ∃(a : P→ Q,cQ), we open a new tableau T ′ to try to refute condition cQ.
Then, we say that ∃(a,cQ) is the opener for T ′.

Nested tableaux have nested branches consisting of sequences of branches of a se-
quence of tableaux in the given nested tableau. While our basic tableaux are assumed
to be finite, nested tableaux and nested branches may be infinite. As said above, we
assume that the condition to (dis)prove is a graph property with paths, i.e. the given
condition c is a condition over the empty graph /0 and the initial tableau has context /0.

Fig. 6: Nested tableau with nested branch Fig. 7: Opener

Definition 11 (Nested tableau, opener, nested branch, semi-saturation). Let (I,≤
, i0) be a poset with minimal element i0. A nested tableau NT is a family of triples
{〈Ti, j, ` j〉}i, j∈I , where Ti is a tableau and ` j = ∃(a j,c j), called the opener of Ti, is the
literal of an open branch in Tj with j < i.

Moreover, we assume that there is an initial tableau Ti1 with 〈Ti1 , i0, true〉 ∈NT with
context /0. For any other 〈Ti, j,∃(a j : Pj→ Pj+1,c j)〉 ∈ NT , Ti has context Pj+1.

A nested branch NB in a nested tableau NT = {〈Ti, j, ` j〉}i∈I is a maximal sequence
of branches Bi1 , . . . ,Bik ,Bik+1 , . . . from tableaux Ti1 , . . . ,Tik ,Tik+1 , . . . in NT starting with
a branch Bi1 in the initial tableau Ti1 , such that if Bik and Bik+1 are two consecutive
branches in the sequence then the leaf in Bik is the opener for Tik+1 .

Finally, NT is semi-saturated if each tableau in NT is semi-saturated.



Definition 12 (Nested tableau rules). Given a graph property c in CNF, a nested
tableau for c is constructed with the following rules:

– Initialization rule (I): Let c be a condition over /0 and Ti1 be a tableau constructed
for c following the rules in Def. 8, then {〈Ti1 , i0, true〉} is a nested tableau for c.

– Nesting rule (N) If NT = {〈Ti, j,∃(a j,c j)〉}i∈I is a nested tableau for c then NT ′ =
NT ∪{〈Tk,n,∃(an,cn)〉} is a nested tableau for c, if ∃(an,cn), with an : Pn→ Pn+1,
is a literal in a leaf of a tableau Tn in NT such that it is not the opener for any other
tableau in NT , k 6∈ I, k > n and Tk is a tableau for cn.

As in the case of standard tableaux, a closed nested branch represents an inconsis-
tency detected between the literals in the branch, and an open branch represents, under
adequate assumptions, a model of the original condition.

Definition 13 (Open/closed nested branch, nested tableau proof). A nested branch
NB in a nested tableau NT for a graph property c in CNF of GPL is closed if NB
contains ∃(a, f alse) or false; otherwise, it is open. A nested tableau is closed if all its
nested branches are closed.

A nested tableau proof for (the unsatisfiability of) c is a closed nested tableau NT
for c in CNF of GPL according to the rules given in Def. 12.

Example 2 (Closed nested tableau). Let `1 and `2 be the literals in Ex. 1, and consider

the new one `3 = ∃(
1• b3−→1•⇒2•, true). Consider the condition c /0 over the /0 context con-

sisting in the conjunction of the following literals: ∃( /0
a1−→1•⇒2•, `1∧`2)∧∃( /0

a2−→1•, `3).
Then, the tableau in Fig. 8 is the result of first applying the extension rule on c /0 and,

then, the lift rule where the literal ∃(a1, `1 ∧ `2) has been chosen as hook. The tableau
is open but semi-saturated as it satisfies Def. 10. That is, no path can be unfolded in
the context /0, and a leaf ∃(a1, `1∧ `2∧ [Shi f t(a1,∃(a2, `3))]) has been generated taking
into account all the literals in the branch.

Then, from that leaf, a new tableau with context
1•⇒2• is opened as in Fig. 9. Finally,

the new tableau can be closed basically as we did for tableau in Fig. 5, since the contra-

diction arises from literals `1 and `2 if we apply the unfolding rule to
1•⇒2• and choose

the unfolding literals as hooks.

true
(∨)

∃( /0
a1−→1•⇒2•, `1∧ `2) HOOK

(∨)

∃( /0
a2−→1•, `3)

(Li f t)
...

∃(a1, `1∧ `2∧ [Shi f t(a1,∃(a2, `3))])

Fig. 8: Tableau of context /0

true
(∨)

`1
(∨)

`2
(∨)

[Shi f t(a1,∃(a2, `3))]
...

Fig. 9: Tableau of context
1•⇒2•



4.3 Soundness and Completeness

In this section we prove that our tableau method is sound and complete. In particular,
soundness means that if we are able to construct a nested tableau where all its branches
are closed then we may be sure that our original condition c is unsatisfiable. Complete-
ness means that if a saturated tableau includes an open branch, where the notion of
saturation is defined below, then the original condition is satisfiable. Actually, the open
branch provides the model that satisfies the condition.

Theorem 1 (Soundness). Given a graph property c in CNF, If there is a nested tableau
proof for c, then c is unsatisfiable.

The proof uses Lemma 3 that states the soundness of the rules for constructing (basic)
tableaux and the fact that if all branches of the nested tableau are closed then it is finite.
In particular, we prove by induction on the structure of NT that if c is satisfiable, then
it must include an open branch. The base case is a consequence of Lemma 3. For the
general case, assuming that the given nested tableau NTi has an open nested branch NB,
we show that NB can be extended by a branch of the new tableau using again Lemma 3.

For the completeness proof, a notion of saturation of nested tableaux is needed, de-
scribing some kind of fairness that ensures that we do not postpone indefinitely some in-
ference step. In this case, this means two issues: the choice of the hook for each tableau
and that (in the limit) all possible unfoldings are performed. Roughly, if a (positive) lit-
eral is never chosen as a hook we will be unable to make inferences between that literal
and other literals, especially, negative literals. Similarly, if some possible unfolding is
never performed, we may fail to see a contradiction between some conditions.

Hence, to construct a saturated tableau, we have to use a fair strategy in the selection
of hooks. This can be done by having, for each nested branch, a queue that includes the
literals that are pending to be chosen as hooks. Similarly, to ensure that all unfoldings
are performed, we may also keep queues of pending unfoldings. So, when opening a
new tableau for a given nested branch, we would choose the hook for that tableau and
we would perform an unfolding according to the given queues.

To prove the completeness theorem we use a key Lemma that shows that we can as-
sociate a graph G to any open branch in a nested tableau NT , so that, if NT is saturated,
G is a model for NT . In particular, G is defined as the colimit of morphisms associated
to the sequence of tableau openers on the branch (Def. 2).

Lemma 4 (Canonical model for an open nested branch). Let NB be an open nested
branch in a saturated nested tableau NT for a graph property c in CNF. Let /0

a0→ . . .Pi
ai→

·· ·
a j−1→ Pj, . . . be the corresponding sequence of contexts for NB, and let G be the col-

imit (cf. Def. 2) of the sequence /0
a0→ . . .P∗i

ai→ ·· ·
a j−1→ P∗j , . . . , where P∗ denotes the

completion of P (cf. Def. 1). Then, G is a graph that satisfies all literals in NB.

The proof of this Lemma consists of three parts. In the first one, we prove that G is
indeed a graph (with infinite paths). In the second one, we prove that G satisfies all the
positive literals in NB. Finally, in the third part, we show that if ` = ¬∃(a : Pi→ Q,c)
is a literal in NB, then there is a successor of ` in NB `′ = ¬∃(a′ : Pj→Q′,c′), obtained
by means of the application of the lifting rule, such that a′ is a split morphism. This
property is the basis for showing that negative literals are also satisfied by G.



Theorem 2 (Completeness). Given a graph property c in CNF, If c is unsatisfiable,
then there is a tableau proof for c.

The proof shows that if there is no tableau proof for c, c is satisfiable. More precisely,
first, we know that there exists a saturated nested tableau NT for c that must include at
least one open nested branch NB. Then, Lemma 4 implies that c is satisfiable.

5 Related Work and Conclusion

The idea of expressing graph properties by means of graphs and graphs morphisms has
its origins in the notions of graph constraints and application conditions [2, 7, 3]. In
[14], Rensink presented a logic for expressing graph properties, closely related with the
Logic of Nested Graph Conditions (LNGC) of Habel and Penneman [4]. Moreover, in
[5], Habel and Radke, presented a notion of HR+ conditions with variables that allowed
them to express properties about paths, but no deduction method was presented. First
approaches to provide deductive methods to this kind of logics were presented in [10]
for a fragment of LNGC, and by Pennemann [11, 12] for the whole logic. Unfortunately,
Penneman was unable to show the completeness of his approach. In [13], Poskitt and
Plump propose an extension of nested conditions with monadic second-order (MSO)
properties over nodes and edges. In particular, they can define path predicates that allow
for the direct expression of properties about arbitrary-length paths between nodes. They
also define a weakest precondition system (a la Pennemann) for verification. However,
again this formalism lacks a deduction method. Lambers and Orejas [8] defined the
nested tableaux method used in this paper and were able to show the completeness of
Pennemann’s inference rules. Recently, in [9], Navarro, Orejas and Pino, presented a
complete proof system for reasoning about XML patterns, including paths.

Our work extends [8, 9], but this extension is far from straightforward. First, we
had to find the right notions of graphs and patterns including a non-standard notion of
infinite paths. These notions are quite more complex than the ones used in [9], where
we were dealing with trees. Second, we had to deal with the fact that, in the new logic,
sets of negative conditions may be unsatisfiable. Finally, the use of arbitrary morphisms,
instead of monomorphisms, in formulas and satisfaction added some more difficulties.

In this paper, we have presented an extension of the LNGC including the possibil-
ity of specifying the existence of paths between nodes, and we have presented a sound
and complete tableau proof method for this logic. Moreover, the formulas in this logic
include arbitrary morphisms, and not only monomorphisms, which gives the logic ad-
ditional expressive power. Similarly, satisfaction is also defined in terms of arbitrary
morphisms, which makes proofs shorter, since the shift construction is defined just in
terms of a pushout, instead of using pair factorization. More precisely, the result of
shifting a literal in our context is, in general, just another literal. However, when using
pair factorization, the result of shifting a literal is, in general, a disjunction of literals,
which will cause additional branching in tableau proofs. In the future, we plan to relate
this logic with the query languages that are used in graph databases.



References

1. Courcelle, B.: The expression of graph properties and graph transformations in monadic
second-order logic. In: Rozenberg, G. (ed.) Handbook of Graph Grammars. pp. 313–400.
World Scientific (1997)

2. Ehrig, H., Habel, A.: Graph grammars with application conditions. In: Rozenberg, G., Salo-
maa, A. (eds.) The Book of L, pp. 87–100. Springer, Berlin (1986)

3. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application conditions.
Fundamenta Informaticae 26, 287–313 (1996)

4. Habel, A., Pennemann, K.H.: Correctness of high-level transformation systems relative to
nested conditions. Mathematical Structures in Computer Science 19(2), 245–296 (2009)

5. Habel, A., Radke, H.: Expressiveness of graph conditions with variables. ECEASST 30
(2010)

6. Hähnle, R.: Tableaux and related methods. In: Robinson, J.A., Voronkov, A. (eds.) Handbook
of Automated Reasoning, pp. 100–178. Elsevier and MIT Press (2001)

7. Heckel, R., Wagner, A.: Ensuring consistency of conditional graph rewriting - a constructive
approach. Electr. Notes Theor. Comput. Sci. 2, 118–126 (1995)

8. Lambers, L., Orejas, F.: Tableau-based reasoning for graph properties. In: Graph Transfor-
mation - 7th International Conference, ICGT 2014, Held as Part of STAF 2014, York, UK,
July 22-24, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8571, pp. 17–32.
Springer (2014)

9. Navarro, M., Orejas, F., Pino, E.: Satisfiability of constraint specifications on XML docu-
ments. In: Martı́-Oliet, N., Ölveczky, P.C., Talcott, C.L. (eds.) Logic, Rewriting, and Con-
currency - Essays dedicated to José Meseguer on the Occasion of His 65th Birthday. Lecture
Notes in Computer Science, vol. 9200, pp. 539–561. Springer (2015)

10. Orejas, F., Ehrig, H., Prange, U.: Reasoning with graph constraints. Formal Asp. Comput.
22(3-4), 385–422 (2010)

11. Pennemann, K.H.: Resolution-like theorem proving for high-level conditions. In: Graph
Transformations, 4th International Conference, ICGT 2008. Lecture Notes in Computer Sci-
ence, vol. 5214, pp. 289–304. Springer (2008)

12. Pennemann, K.H.: Development of Correct Graph Transformation Systems, PhD Thesis.
Dept. Informatik, Univ. Oldedburg (2009)

13. Poskitt, C.M., Plump, D.: Verifying monadic second-order properties of graph programs. In:
Graph Transformation - 7th International Conference, ICGT 2014, Held as Part of STAF
2014, York, UK, July 22-24, 2014. Proceedings. pp. 33–48 (2014)

14. Rensink, A.: Representing first-order logic using graphs. In: Graph Transformations, Second
International Conference, ICGT 2004. Lecture Notes in Computer Science, vol. 3256, pp.
319–335. Springer (2004)

15. Trakhtenbrot, B.A.: The impossibility of an algorithm for the decision problem on finite
classes (in russian). Doklady Akademii Nauk SSSR, 70:569-572, 1950. English translation
in: Nine Papers on Logic and Quantum Electrodynamics, AMS Transl. Ser. 2(23), 1–5 (1963)


